Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum.

نویسندگان

  • Zomary Flores-Cruz
  • Caitilyn Allen
چکیده

The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ralstonia solanacearum encounters an oxidative environment during tomato infection.

Ralstonia solanacearum genes that are induced during tomato infection suggested that this pathogen encounters reactive oxygen species (ROS) during bacterial wilt pathogenesis. The genomes of R. solanacearum contain multiple redundant ROS-scavenging enzymes, indirect evidence that this pathogen experiences intense oxidative stress during its life cycle. Over 9% of the bacterium's plant-induced g...

متن کامل

Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum

Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in mi...

متن کامل

Induction of the Viable but Nonculturable State of Ralstonia solanacearum by Low Temperature in the Soil Microcosm and Its Resuscitation by Catalase

Ralstonia solanacearum is the causal agent of bacterial wilt on a wide variety of plants, and enters a viable but nonculturable (VBNC) state under stress conditions in soil and water. Here, we adopted an artificial soil microcosm (ASM) to investigate the VBNC state of R. solanacearum induced by low temperature. The culturability of R. solanacearum strains SL341 and GMI1000 rapidly decreased at ...

متن کامل

Involvement of NpdA, a Putative 2-Nitropropane Dioxygenase, in the T3SS Expression and Full Virulence in Ralstonia solanacearum OE1-1

Previously, we isolated several genes that potentially affected the expression of type III secretion system (T3SS) in Ralstonia solanacearum OE1-1. Here, we focused on the rsp0316, which encodes a putative 2-nitropropane dioxygenase (hereafter designated NpdA). The deletion of npdA substantially reduced the T3SS expression and virulence in OE1-1, and the complementation with functional NpdA cou...

متن کامل

Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco

UNLABELLED Plants use the signaling molecule salicylic acid (SA) to trigger defenses against diverse pathogens, including the bacterial wilt pathogen Ralstonia solanacearum SA can also inhibit microbial growth. Most sequenced strains of the heterogeneous R. solanacearum species complex can degrade SA via gentisic acid to pyruvate and fumarate. R. solanacearum strain GMI1000 expresses this SA de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 77 18  شماره 

صفحات  -

تاریخ انتشار 2011